
Secure Microkernels, State Monads and Scalable
Refinement

David Cock1, Gerwin Klein1,2, and Thomas Sewell1

1 Sydney Research Lab., NICTA?, Australia
2 School of Computer Science and Engineering, UNSW, Sydney, Australia

{david.cock|gerwin.klein|thomas.sewell}@nicta.com.au

Abstract. We present a scalable, practical Hoare Logic and refinement
calculus for the nondeterministic state monad with exceptions and failure
in Isabelle/HOL. The emphasis of this formalisation is on large-scale ver-
ification of imperative-style functional programs, rather than expressing
monad calculi in full generality. We achieve scalability in two dimensions.
The method scales to multiple team members working productively and
largely independently on a single proof and also to large programs with
large and complex properties.
We report on our experience in applying the techniques in an exten-
sive (100,000 lines of proof) case study—the formal verification of an
executable model of the seL4 operating system microkernel.

1 Introduction

This paper touches on three main topics: the verification of a secure operating
system microkernel, the state monad as used in Haskell programs, and formal
refinement as the verification technique in the correctness proof.

The main motivation for our work is the first of these three. In the larger
context, we are aiming to design and fully formally verify the seL4 microkernel
down to the level of its ARM11 C implementation. The seL4 microkernel [3,6] is
an evolution of the L4 family [15] for secure, embedded devices. As described
elsewhere [5], the design of seL4 involved building a binary compatible prototype
of the kernel in the programming language Haskell which subsequently was
automatically translated into Isabelle/HOL to arrive at a very detailed, executable
formal model of the kernel. This operational model is inherently state based, and
the corresponding Haskell program makes extensive use of the state monad to
express the corresponding state transformations. The model is low level, using
data types such as 32 bit wide finite machine words, modelling the heap memory
of the eventual C program explicitly as part of its state, and mutating typical
pointer data structures such as doubly linked lists on that heap.

Complementing this executable model is a still operational, but more abstract
specification of the functional behaviour of seL4. This more abstract model
?

NICTA is funded by the Australian Government as represented by the Department of Broadband,

Communications and the Digital Economy and the Australian Research Council.

uses nondeterminism to leave details unspecified and uses, for instance, abstract
functions instead of explicit pointer representations (although it still makes use
of references on many occasions, to model the user-visible sharing behaviour of
particular data structures).

This paper presents the main techniques we used in verifying that the exe-
cutable model correctly implements its abstract specification. It should be noted
explicitly that we did not aim for maximum generality and theoretical depth in
either the formalisations or the techniques. Instead, we focused on simplicity, easy
applicability, and most importantly scalability of the methods. As a microkernel,
seL4 is neither nicely modular, nor does it implement a nicely self contained
abstract algorithm. Compared to other verifications, the main challenge was to
deal with a highly complex, intermingled set of low-level data structures with high
reliance on global invariants exploited in various optimisations. The size of the
specifications, with about 3K lines of Isabelle definitions on the abstract and 7K
lines on the concrete side, implies a massive proof effort which we aimed to spread
over multiple people working concurrently, with as little need for interaction and
coordination as possible.

In summary, this paper can be seen as a study on how far you can get with
the simplest possible methods. It is our hypothesis that it was precisely this
simplicity that enabled us to achieve this large-scale verification.

The contributions of this paper are as follows.

– We formalise the nondeterministic state monad with exceptions and fail-
ure. This subsumes the state monad with exceptions that is commonly
used in Haskell. The formalisation is a shallow embedding into the logic of
Isabelle/HOL.

– We present a Hoare Logic and refinement calculus on the above, both simple
yet scalable and practical.

– We report on our experience in applying the above to a binary compatible,
executable model of seL4 microkernel translated from Haskell.

The following sections provide detail on each of these in turn.

2 State Monads

A state monad allows a pure functional model of computation with side effects.
For result type ’a and state type ’s, the associated monad type (abbreviated
(’s, ’a) state-monad) is ’s ⇒ ’a × ’s. That is, a function from previous state
to next state together with a computation result. A pure state transformer is
typically denoted by the one-valued return type unit i.e. ’s ⇒ unit × ’s.

All monads define two constructors, here called return and bind. For the state
monad they are defined as follows:

return :: ’a ⇒ (’s,’a) state-monad
return a ≡ λs. (a, s)

bind :: (’s,’a) state-monad ⇒ (’a ⇒ (’s,’b) state-monad) ⇒ (’s,’b) state-monad
bind f g ≡ λs. let (v , s’) = f s in g v s’

Note that as Isabelle/HOL is simply typed, it is not possible to straightfor-
wardly define the monad type constructor as in Haskell, defining return, bind and
associated syntax once, and thereby proving results generically about the class of
monadic types. The solution that we adopt is to instantiate the class for specific
monads and monad constructors, e.g., return :: ’a ⇒ (’s, ’a) state-monad .

The constructor return simply injects the value a into the monad type, passing
the state unchanged, whilst bind sequentially composes a computation f, and a
computation g (a function from the return type of f). The expression bind f g is
abbreviated as f >>= g. To allow concise description of longer computations,
we define a do syntax in a similar fashion to Haskell:

do x ← f ; g x od ≡ f >>= g

A state monad also defines two additional constructors: get and put, the primitive
state transformers (here () is the sole element of type unit):

get :: (’s, ’s) state-monad put :: ’s ⇒ (unit , ’s) state-monad
get ≡ λs. (s, s) put s ≡ λ-. ((), s)

The constructors of all monads must obey the following three laws, which we
have instantiated and proved for each monad instance:

return x >>= f = f x return bind
m >>= return = m bind return
(m >>= f) >>= g = m >>= (λx . f x >>= g) bind assoc

The simple state monad is able to model sequential computations with
side-effects, but does not provide good notation for non-local flow control (e.g.
exceptions). A straightforward way to model try-catch-style exceptions is to
instantiate the state monad return type with the sum type ’e + ’a (for result
type ’a and exception type ’e) in place of the simple result type. Every component
in the monad now returns either Inr a in case of success, or Inl e in case of failure
with exception e. To complete the model we require a new bind constructor,
bindE which propagates exceptions, and the catch constructor to embed the error
monad into the non-error state monad.

lift f v ≡ case v of Inl e ⇒ return v | Inr a ⇒ f a

bindE f g ≡ f >>= lift g

catch f handler ≡ do x ← f ;
case x of Inl e ⇒ handler e | Inr b ⇒ return b

od

In formulating an abstract behavioural model, it is convenient to express
computation nondeterministically. This is readily modelled as an extension of
the state monad by allowing each computation to return a (possibly empty) set
of value-state pairs: ’s ⇒ (’a × ’s) set, and redefining bind as λs.

⋃
{g a s’

| (a,s’) ∈ f s}. This formulation has a drawback however: we wish to model
catastrophic failure e.g. kernel panic, and show its absence; the obvious definition
fail ≡ λs. {}, admits only the existential statement: For all states s, not all paths
fail. What we desire, however, is the universal statement: For all states s, no path
fails, which cannot be expressed as a simple predicate on the state set, as the

failure case ({}) is dominated in the union by the non-failure case. Our solution
is to append a failure flag which is propagated separately, and which dominates
non-failure in bind. This leads us to the following definitions (n.b. f ‘ A is the
image of A under f):

return a ≡ λs. ({(a, s)}, False)
bind f g ≡ λs. (

S
fst ‘ (λ(x , y). g x y) ‘ fst (f s),

True ∈ snd ‘ (λ(x , y). g x y) ‘ fst (f s) ∨ snd (f s))

In addition to the state monad constructors get and put, we define select,
a nondeterministic return, which takes a set of values. We also define fail as
indicated above:

get :: (’s,’s) nd-monad put :: ’s ⇒ (unit ,’s) nd-monad
get ≡ λs. ({(s, s)}, False) put s ≡ λ-. ({((), s)}, False)

select :: ’a set ⇒ (’s,’a) nd-monad fail :: (’s,’a) nd-monad
select A ≡ λs. (A × {s}, False) fail ≡ λs. ({}, True)

The nondeterminism inherent in the model allows us to model input conve-
niently: do x ← select InputActions; f x od.

3 Hoare Logic on State Monads

The Hoare triple {|P |} f {|Q |} is a predicate on the computation f, stating that
if the precondition P holds before execution, then the postcondition Q will
hold afterwards. Since HOL is a logic of total functions, and f is just a HOL
function that must terminate, our Hoare triples express total correcntess. For
the nondeterministic state monad, the basic Hoare triple also needs to take into
account the return value and is defined as follows:

{|P |} f {|Q |} ≡ ∀ s. P s −→ (∀ (r , s’)∈ fst (f s). Q r s’)

Note that the postcondition Q is a binary predicate while P is unary. For the
state monad with exceptions, we define:

{|P |} f {|Q |}, {|R|} ≡ {|P |} f {|λr s. case r of Inl a ⇒ R a s | Inr b ⇒ Q b s|}

This specifies a separate postcondition for the exception and non-exception cases.
All of the following rules have a natural expression for the state-exception monad
in terms of this augmented Hoare triple.

To build a calculus for reasoning about monadic computations, we first state
and prove axiomatic rules for the basic constructors:

{|λs. P () x |} put x {|P |} put-wp {|λs. P s s|} get {|P |} get-wp
{|P x |} return x {|P |} return-wp

Constructor bind requires a more complicated rule, to capture the interaction of
the pre- and post-conditions of composed computations:

∀ x . {|B x |} g x {|C |} {|A|} f {|B |}
{|A|} f >>= g {|C |}

seq

Note that the premises of the seq rule are reversed with respect to the program
order, this is done to ease the repeated application of the rule by the VCG.

Finally, to complete the basic calculus we introduce the weaken rule, to
substitute arbitrary preconditions. An analogous rule (strengthen) exists to
substitute postconditions.

{|Q |} f {|R|} ∀ s. P s −→ Q s

{|P |} f {|R|}
weaken

An equivalent set of rules exists to reason about the presence or absence of failure.

4 Verification Condition Generator

As usual in Hoare Logic, reasoning within this calculus can be substantially
automated by the use of a verification condition generator (VCG) if we phrase
our structural Hoare rules in weakest-precondition (WP) form. The rules given
for put, get and return in Sect. 3 are weakest-precondition rules. As an example,
consider the following definition of the modify constructor, and the proof of its
associated weakest-precondition rule:

modify f ≡ do s ← get; put (f s) od

We wish to show {|λs. P () (f s)|} modify f {|P |}. Before invoking the VCG, we
unfold definitions until the goal is phrased in terms of known operations. The
VCG then produces the following proof steps automatically.

It starts by applying the weaken rule to replace the concrete precondition
with a schematic3 precondition, ?Q, and an implication. We get two new goals:

1 . {|λs. ?Q |} do s ← get; put (f s) {|P |}
2 . ∀ s. P () (f s) −→ ?Q

The VCG now repeatedly tries to apply one of its set of WP rules. The rule
seq will match the current goal, as its postcondition is fully general (matching
the concrete P) and the precondition, which is concrete in the rule, matches the
schematic precondition ?Q that we have just created. If the WP set is constructed
correctly, the goals will always remain in this form, with concrete postcondition
and schematic precondition, and for every top-level operator there will be one
rule that matches. In our example, the VCG would apply seq, put-wp, and
get-wp in turn, leaving the user with only the implication introduced at the
first step. This is a HOL formula, free of both monad and Hoare syntax:

1 . ∀ s. P () (f s) −→ P () (f s)

Here, the goal is trivial, as the precondition we set out to prove was in fact
the weakest. We could now add this new WP rule to the set available to the VCG,
to avoid having to unfold the definition of modify in future. In this manner we
progressively build the calculus towards a higher and higher level of abstraction.

3 Schematic variables in Isabelle stand for terms that can be syntactically instantiated
(as opposed to free variables that need to remain fixed in proofs).

Note that, if we add rules that are not strictly weakest preconditions, we do
not affect the soundness of the VCG, we simply take the risk that the implication
goal produced may be too weak to be provable, indicating that our rules need to
be strengthened.

The weakest-precondition rules mentioned so far all apply to an arbitrary
postcondition. For elementary functions like put, get and modify, rules of this form
are easily stated. In principle such a rule can be stated for any of the monadic
functions we use. In practice, however, we find that the preconditions in these
rules are typically of exponential term size with respect to the complexity of the
operator. The tractable solution we have found is to supply the VCG instead
with Hoare triples that have specific postconditions and manually simplified
preconditions. In principle these can still be weakest precondition rules, however
this is not normally the case. An example is set-ep-valid-objs:

{|λs. valid-objs s ∧ valid-ep v s|} set-endpoint ep v {|λrv s. valid-objs s|}

The set-endpoint function models pointer update for the communication
endpoint type. Like other models of pointer update, it simply replaces the
contents of the heap at the given address with the new value. The valid-objs
predicate in the postcondition is one of our global invariants, and establishes that
all objects satisfy certain validity criteria. Clearly for set-endpoint to preserve
valid-objs the new endpoint value must satisfy the appropriate validity predicate,
valid-ep. This is not the weakest possible precondition, as it globally asserts in
valid-objs that the value about to be replaced is valid, which is unnecessary. The
precise weakest precondition would be tedious to define, and the precondition
given, although not weakest, is always true in practice.

Hoare triples with specific postconditions complicate the VCG, which must
labour to connect the postconditions available to the one that is needed. To
illustrate this problem, consider the scenario in which we wish to establish
valid-objs after a pair of endpoint updates.

{|λs. valid-objs s ∧ valid-ep v s ∧ valid-ep v’ s|}
do set-endpoint p v ; set-endpoint p’ v’ od
{|λrv s. valid-objs s|}

The VCG can divide the problem using seq and apply set-ep-valid-objs to
the second problem. The postcondition for the first update will then be λrv s.
valid-objs s ∧ valid-ep v’ s. To apply set-ep-valid-objs again, the VCG must
first use the conjunction lifting rule.

{|P |} f {|Q |} {|P’ |} f {|Q’ |}
{|λs. P s ∧ P’ s|} f {|λrv s. Q rv s ∧ Q’ rv s|}

conj-lift

The conjunction operator is one of a family of first-order logic operators that have
a VCG lifting rule. Conjunction, disjunction, and the universal and existential
quantifiers have lifting rules, but the negation operator does not. Implication is
dealt with by reducing to a disjunction and negation, after which the negation
must be dealt with explicitly.

The only such lifting rule that the VCG will use by default is conj-lift, and
it will only be used conservatively, that is, when one of the subproblems created
can be immediately solved using another rule. The VCG can also be configured
to use any lifting rule aggressively, that is, whenever possible.

The VCG could apply all lifting rules by default. However, should one or
more of the created subgoals be unresolvable, the resulting proof state may be
difficult to understand or work with. It is thus pragmatically useful for the VCG
to fail early, returning an interactive state that is amenable to further manual
progress. Conjunction occurs in our postconditions so frequently that the VCG
must handle it explicitly, but other operators are rare enough to be handled
manually.

The VCG is not limited to Hoare triples. Rules for absence of failure, as
mentioned in Sect. 3, can be similarly automated by the same tool.

5 Refinement Calculus

The ultimate objective of our effort is to prove refinement [2] between an abstract
and a concrete process. We define a process as a triple containing an initialisation
function, which creates the process state with reference to some external state, a
step function which reacts to an event, transforming the state, and a finalisation
function which reconstructs the external state.

record process = Init :: ’external ⇒ ’state set
Step :: ’event ⇒ (’state × ’state) set
Fin :: ’state ⇒ ’external

The execution of a process, starting from a initial external state, via a sequence
of input reactions results in a set of external states: (n.b. R ‘‘ S is the image of
the set S under the relation R)

steps δ s events ≡ foldl (λstates event . (δ event) ‘‘ states) s events
execution A s events ≡ (Fin A) ‘ (steps (Step A) (Init A s) events)

Process A is refined by C, if with the same initial state and input events, execution
of C yields a subset of the external states yielded by executing A:

A v C ≡ ∀ s events. execution C s events ⊆ execution A s events

Refinement is commonly proven by establishing forward simulation [2], of which
it is a consequence. To demonstrate forward simulation we define a relation, SR,
between states of the two processes. We must show that the relation is established
by Init, is maintained if we advance the systems in parallel, and implies equality
of the final external states: (n.b. S ;; T is the composition of relations S and T.)

fw-sim SR C A ≡ (∀ s. Init C s ⊆ SR ‘‘ Init A s)
∧ (∀ event . SR ;; Step C event ⊆ Step A event ;; SR)
∧ (∀ s s’ . (s, s’) ∈ SR −→ Fin C s’ = Fin A s)

To address our scalability concerns, we wish to decompose the refinement
problem into smaller subproblems and translate the statement to the state monad.
The simplest way to do this is to break the forward simulation problem down to

component functions. The corres predicate captures forward simulation between a
single concrete monadic computation, C, and its abstract counterpart, A, with SR
instantiated to our standard state relation, state-relation. It takes three additional
parameters: R relates abstract and concrete return values, and the preconditions
P and P’ restrict the input states, allowing use of information such as global
invariants:

corres R P P’ A C ≡ ∀ (s, s’)∈ state-relation. P s ∧ P’ s’ −→
(∀ (r’ , t’)∈ fst (C s’). ∃ (r , t)∈ fst (A s). (t , t’) ∈ state-relation ∧ R r r’)
∧ (snd (C s’) −→ snd (A s))

Note that the outcome of the monadic computation is a pair of result and
failure flag. The last conjunct of the corres statement is stronger than strictly
necessary for refinement. It states that failure on the concrete m’ implies failure
on the abstract m. This means we only have to show absence of failure on the
most abstract level to get absence of failure on all concrete levels by refinement.

The key property of corres is that it decomposes over the bind constructor
through the corres-split rule.

corres-split:
corres R’ P P’ A C ∀ r r’ . R’ r r’ −→ corres R (S r) (S’ r’) (B r) (D r’)

{|Q |} A {|S |} {|Q’ |} C {|S’ |}
corres R (P and Q) (P’ and Q’) (A >>= B) (C >>= D)

Similar splitting rules exist for other common monadic constructs including
bindE, catch and conditional expressions. There are terminating rules for the
elementary monadic functions, for example:

corres-return:
R a b

corres R (λs. True) (λs. True) (return a) (return b)

The corres predicate also has a weakening rule, similar to the Hoare Logic.

corres-precond-weaken:
corres R Q Q’ A C ∀ s. P s −→ Q s ∀ s. P’ s −→ Q’ s

corres R P P’ A C

Proofs of the corres property take a common form: first the definitions of the
terms under analysis are unfolded and the corres-precond-weaken rule is
applied. As with the VCG, this allows the syntactic construction of a precondition
to suit the proof. The various splitting rules are used to decompose the problem;
in some cases with carefully chosen return value relations. Existing results are
then used to solve the component corres problems. Some of these existing results,
such as corres-return, require compatibility properties on their parameters.
These are typically established using information from previous return value
relations. The VCG eliminates the Hoare triples, bringing preconditions assumed
in corres properties at later points back to preconditions on the starting states.
Finally, as in Dijkstra’s postcondition propagation [4], the precondition used
must be proved to be a consequence of the one that was originally assumed.

6 Case Study – The seL4 Microkernel

In this section, we give an overview of the seL4 microkernel, its two formalisations
in Isabelle/HOL, some of the properties we have proved on them, and our
experience in this verification. With about 10,000 lines of C code; 7,500 lines
of executable model and 3,000 lines of abstract Isabelle/HOL specification, the
kernel is too large for us to provide any kind of useful detail in a conference
paper, or even a comprehensive overview of its formalisation. We do not attempt
to do so; instead we provide a very high-level view of its functionality, and show
bits and pieces of the formalisation to give an impression of the general flavour.

6.1 Overview

As mentioned in the introduction, seL4 is an evolution of the L4 microkernel
family. The main difference to L4 is that it is entirely capability based, unifying
all resource accounting and access control into a single mechanism.

All kernel abstractions and system calls are provided via named, first-class
kernel objects. Authorised users obtain kernel services by invoking operations
on kernel objects. Authority over these objects is conferred via capabilities only.
System call arguments can be either data, or other capabilities. Similarly to L4,
seL4 provides three basic abstractions: threads, address spaces and inter-process
communication (IPC). In addition, seL4 introduces an abstraction, untyped
memory (UM), which represents a region of currently unused physical memory.

An important part of the seL4 design is that all memory, used directly by
an application (e.g. memory frames) or indirectly through the kernel (e.g. page
tables), is fully accounted for by capabilities. A parent capability to untyped
memory can be refined into child capabilities to smaller untyped memory blocks
or other kernel objects via the retype operation. The creator can then delegate all
or part of the its authority over the object to one or more of its clients. Untyped
capabilities can be revoked : this removes all corresponding child capabilities from
clients and prepares the memory spanned by that capability for retyping.

These mechanisms make seL4 a highly flexible microkernel, supporting a
number of practical application scenarios. A simple example is running a full
legacy guest OS (e.g. Linux) next to a critical, trusted communications stack;
another is to provide full separation between components at multiple security
levels with strict controls on explicit information channels between them.

6.2 Formalisation

We now give a very brief introduction to the formalisation of seL4. We begin
with the state space of the abstract model.

This state is embedded into a process, modelling machine execution, of which
we make only the kernel execution precise. User-level execution is assumed free to
mutate any user-accessible part of the state. The transitions for kernel execution
are defined by a nondeterministic monadic function, in the manner described
above. The events triggering these transitions are: timer interrupts, kernel trap

instructions (user level kernel calls), page faults, and user-level faults. We collect
all of these in the data structure event, shared with the executable level:

datatype syscall = Send | Wait | SendWait | Identify | Yield

datatype event = SyscallEvent syscall | UnknownSyscall nat |
UserLevelFault nat | TimerInterrupt | VMFaultEvent vptr bool

The type syscall models user level calls (sending/replying to IPC, identifying
capabilities, yielding the current time slice). The other events are machine
generated. Arguments to system calls are read from machine registers in binary
form and decoded for further processing. This decoding phase is fully precise in
the abstract specification, and therefore very similar on the executable and the
abstract level. It is a major part of the programmer-visible API specification; in
fact, typical kernel reference manuals describe almost exclusively this syntactic
part, and only sketch the semantics of the system; the latter is the bulk of the
specification in our case.

The abstract state space of seL4 is a record with the following components:

record abstract-state = pspace :: obj-ref ⇀ kernel-object
cdt :: cte-ptr ⇀ cte-ptr
cdt-revokable :: cte-ptr ⇒ bool
cur-thread :: obj-ref
machine-state :: machine-state

datatype kernel-object = CapTable cap-ref ⇀ cap | TCB tcb |
Endpoint endpoint | AsyncEndpoint async-ep | Frame

The whole state space declaration4 comprises approximately 200 lines of
Isabelle definitions, we mention only the salient points. The pspace component
models the kernel-accessible part of memory. In this abstract view, it is a partial
function from object references (machine words) to kernel objects. The capability
derivation tree (CDT) is a data structure that keeps track of the parent/child
relationship between capabilities; it is realised as a partial function from child
capability table entry (CTE) locations to parent CTE locations, i.e., a tree of CTE
locations. A CTE location is fully determined by the location of the kernel object
(an obj-ref) and a position within that kernel object (a cap-ref). As mentioned,
CapTable objects store capabilities; TCB objects implement the kernel accounting
for threads; Endpoint and AsyncEndpoint objects implement IPC, and Frame
objects stand for user data frames. The remaining two components of the global
state are a pointer to the TCB of the current thread and the machine state
(e.g. register state). Currently, we do not model the machine state in detail, but
instead use a set of axiomatised functions such as loadRegister/storeRegister on
type machine-state.

Since the machine context is the main part of the shared outside-observable
part of the two models, we have proved during refinement that the observable
effect of reads, writes, cache flushes, TLB flushes, etc. is the same on both

4 We present a slightly simpler, earlier version of the model here. The current version
also contains interrupt tables and page table data structures.

levels. In the next step of refinement, to C, we plan to eliminate these remaining
straightforward axioms and provide a direct model for the machine context.

In the concrete model, our abstract views of the CDT, and kernel object
states vanish, and are replaced with much more detailed alternatives. The CDT,
for instance, becomes a doubly linked list together with a number of flags for level
information, stored in machine words within CTEs. In addition, we gain a number
of state components implementing data structures that were not necessary on
the abstract level. These are: a table of ready-queues for scheduling (indexed
by a priority byte), and a scheduler action which effectively points to the next
thread’s TCB.

record concrete-state = ksPSpace :: pspace
ksReadyQueues :: 8 word ⇒ ready-queue
ksCurThread :: 32 word
ksSchedulerAction :: scheduler-action
ksMachineState :: machine-state

The ksPSpace component corresponds to the C heap, and ksMachineState to
the machine context, as on the abstract side. The rest are global pointer variables.
In this way, the executable model is close to the final implementation.

For refinement, we need to define the process types of the models. The
executable model has a single entry point, callKernelC, which handles the event
type defined above. It is natural then to define the Step component of the process
datatype as the outcome of this nondeterministic monadic operator. Likewise,
the Init component resets the state to the default newKernelStateC and then calls
initKernelC. The Fin component is simply the projection, ksMachineState. The
abstract process is defined similarly.

The refinement property can then be proven using corres properties and
Hoare triples. First, we establish that our abstract and concrete global invariant
collections, (invsA and invsC), are invariants of the respective processes.

{|λs. s = newKernelStateA|} initKernelA entry frames offset kFrames {|λr . invsA|}
{|invsA|} callKernelA e {|λr . invsA|}, {|λr . invsA|}

{|λs. s = newKernelStateC|} initKernelC entry frames offset kFrames {|λr . invsC|}
{|invsC|} callKernelC e {|λr . invsC|}, {|λr . invsC|}

Secondly, we establish that all elements of the Init sets are related.

(newKernelStateA, newKernelStateC) ∈ state-relation

corres dc (λs. s = newKernelStateA) (λs. s = newKernelStateC)
(initKernelA entry frames offset kFrames)
(initKernelC entry frames offset kFrames)

Finally we establish that the main execution steps correspond.

corres (intr ⊕ dc) invsA invsC (callKernelA event) (callKernelC event)

From these we establish forward simulation, which implies refinement. The
statements above are slightly simplified versions of our theorems which involve
more preconditions on machine behaviour.

6.3 Properties

We now describe some of the properties and invariants we proved on these two
formalisations, in addition to the main refinement theorem that states that the
concrete model is a correct implementation of the abstract specification.

One of the first properties proved on both levels was that all system calls
terminate. Since HOL is a logic of total functions, this is a necessary condition
to formalise the kernel behaviour. The proof for most of the kernel was straight-
forward; we only had one complex, mutually recursive case that models a nested
loop in the C code: the delete operation that removes capabilities.

The main invariant of the kernel is simple: all references in the kernel—be it
in capabilities, kernel objects or other data structures—always point to an object
of the expected type. This is a dynamic property as memory can be re-typed at
runtime. Despite its simplicity, it is the major driver for almost all other kernel
invariants. Exceptions are low-level invariants like address 0 is never inhabited
by any object, and objects are always aligned to their size.

The main validity predicates (including valid-objs and valid-ep mentioned
previously) are liftings of the well-typedness criterion above to the entire heap,
thread states, scheduler queues and other state components. An example of a
more complex invariant, needed to prove that well-typedness is preserved is: A
kernel object k1 contains a reference to kernel object k2 if and only if there exists
a (possibly transitive) reference from k2 back to k1. This symmetry condition
can be used to conclude that if an object contains no references itself, there
will be no dangling references to it in the rest of the kernel. It would therefore
be safe to remove such an object once capability references are checked. To
avoid inefficient object state checks, we additionally observe: If an object is live
(contains references to other objects), there exists a capability to it.

Testing for capabilities is much easier, because they are tracked explicitly in
the CDT. CDT-related properties include:

Linked List. The doubly-linked list structure is consistent (back/forward point-
ers are implemented correctly), the lists always terminate in NULL, and the
list together with the additional tags correctly implements a tree. This is a
basic shape property.

Chunks. If two CTEs point to the same memory location, they have a common
ancestor and all entries between them in the CDT point to this same memory
location. This ensures various tests in the kernel can be implemented locally.

Cap Ancestry. If an untyped capability c1 covers a sub-region of another
capability c2, then c1 must be a descendant of c2 according to the CDT.

Object Ancestry. If a capability c1 points to a kernel object whose memory is
covered by an untyped capability c2, then c1 must be a descendant of c2.

All of these together ensure that memory can be retyped safely and with minimal
local checks; if an untyped capability has no children, then all kernel objects in
its region must be non-live (otherwise there would be capabilities to them, which
in turn would have to be children of the untyped capability). If the objects are
not live and no capabilities to them exist, there is no further reference in the
whole system that could be made unsafe by the type change.

This example is the most complex chain of invariants we had to create for a
single operation. Other operations, such as IPC and scheduling have their own
requirements.

6.4 Experience and Lessons Learned

The total effort for the refinement proof described here was 100,000 lines of
Isabelle/HOL and 5 person years. The proof lead to over 100 changes in each
of the two specifications. The majority of the changes were for ease of proof:
slight re-arrangement of code, avoidance of unnecessary optimisations, local tests
instead of global assumptions. The majority of actual bugs were typographical
and copy & paste errors that slipped through prior testing. Unsurprisingly,
there were far more of these simple mistakes on the abstract level than on the
executable one. The abstract level was only type checked, never run, since it is
not executable. We found on the order of 10 conceptual problems and oversights
which would have lead to crashes or security exploits—as would have most of
the typos. These were mainly missing checks on user input, subtle side effects in
the middle of operations, or (rarely) too-strong assumptions on what is invariant
during execution. Security attacks became apparent via invariant violations.

We found that the kernel programming team usually knew the invariants
precisely and used them for optimisations. In fact, the developers were often
able to articulate clearly why a certain property should hold or why a certain
test was unnecessary. A number of the security breaches mentioned above were
discovered during these discussions with the developers. On the other hand, it
was the formal proof that forced us to have this discussion in the first place.

In terms of lessons learned, we confirm the usual observation that the more
abstract the easier, and the less assumptions on global state the easier. In this
light, it was unsurprising that the low-level CDT and large, concrete initialisation
phase of the kernel were unpleasant parts of the proof.

After an initial full proof of refinement was achieved, we found that new
features could be added with reasonable effort. This depends on how independent
the new feature is from the rest of the system. If it uses its own data structure
that is not accessed anywhere else, the effort is largely proportional to the size
of the feature. For instance, adding multiple capability arguments to system
calls (as opposed to only one) was easy, with about 2 person weeks of effort,
although it concerned changes fairly deep in IPC message decoding and transfer.
If, on the other hand, the feature is highly intermingled with the rest of the
system, a factor of the size of the kernel times the size of the feature is to be
expected. We hypothesise that the effort for the whole verification so far was
quadratic in the size of the kernel. Since in a microkernel almost every basic
feature relies on properties of almost all others (IPC, TCBs, CTEs, CDT are all
highly connected), proving preservation of a new invariant on one feature will
involve significant work not only on this, but on all other features in the kernel
as well. The refinement proof itself remains linear in the size of the kernel. With
more modular code, one would expect independent data structures and therefore
invariant proofs of a size proportional to the code.

Another observation concerns invariant discovery. We began with a simple
invariant that was needed for the refinement proof (well-typedness) and let that
drive the invariant discovery process. In hindsight it would, after a short initial
phase, probably have been more effective to simply use the strongest invariant
that we suspected we could prove. At several points we hoped to get away with
a simpler formulation, but were then caught out halfway through the proof by a
particular operation after several thousand lines of proof. We then ended up with
the complex, precise form anyway. The lesson is: in such a complex system, the
simple formulation is unlikely to succeed. Take the precise formulation instead,
even if it looks like more work initially. As mentioned above, a good source of
invariants is the development team.

In terms of proof engineering and the methods presented in this paper, we
believe we have achieved our goal of scalability. Up to four people worked on this
proof concurrently and independently without much conflict. We estimate that
for code of this size (10K lines of C code) a team of more than five or six persons
would need a more serious effort in planning and synchronisation.

Once the framework and invariants are established, and more importantly
once the kernel is well understood, the proof is not too hard and should be readily
repeatable. We see potential for more automation in the refinement proof, and in
exploratory automatic invariant proofs. Simple invariants can often be stated and
proved automatically for many functions at a time. This could automatically be
tried for a set of basic properties before manual proof starts. We have developed
first steps in this direction, but have not made it the focus so far.

In conclusion, code verification at this size and level of detail is entirely
feasible with current theorem proving technology.

7 Related Work

Earlier work on OS verification includes PSOS [7] and UCLA Secure Unix [20].
Later, KIT [1] describes verification of process isolation properties down to object
code level, but for an idealised kernel far simpler than modern microkernels.
The Verisoft project [9] is attempting to verify a whole system stack, including
hardware, compiler, applications, and a simplified microkernel VAMOS. The
VFiasco [13] project is attempting to verify the Fiasco kernel, another variant
of L4 directly on the C++ level. The Coyotos [17] kernel is being designed for
verification, but it is unclear how much progress has been made.

The House and Osker kernels [11] (in Haskell) and the Hello kernel [8] (in
Standard ML) demonstrated that modern functional languages can be used to
develop bare metal implementations of operating systems. In contrast, we see
our Haskell implementation of the kernel as a prototype only.

There are other approaches to translating Haskell into Isabelle [10,12,14].
Since none of these approaches were able to parse our code base, we use our own
translator; for the work presented here, we need to assume its correctness. In
the longer term however, this is unnecessary, because the final theorem will be a

refinement theorem between the abstract Isabelle model and the C program. We
have already invested significant effort into modelling C precisely [19].

Our treatment of Hoare Logic on monads is much less general than that of
Mossakowski et al. [16]. We do not make assertions part of the program, which
in our setting would provide barriers to splitting up the same proof among
multiple persons. As mentioned before, we trade generality for simplicity, and for
lightweight infrastructure with an emphasis on scalability.

8 Conclusion

We have presented simple, but effective techniques for reasoning about state-based
functional programs and for proving formal refinement on them. Although we
have not aimed at full generality, we are convinced that the combination of basic
monads we used covers a wide range of practical programs in languages such as
Haskell and ML. Our case study has shown that it is practical to fully formally
verify programs of thousands of lines of code at this level.

The salient point of our Hoare Logic is that it is simple enough to be automated
effectively; but despite its simplicity, expressive enough to be easily applicable.
Our extension of classic refinement to the nondeterministic state monad is formally
largely straightforward, and the calculus presented is not complete. Again, the
main point is that it is engineered such that a large-scale proof can be effectively
divided up into mostly independent parts. Classical step-wise refinement calculi
do not necessarily work well within this paradigm, and often require window
reasoning and other complex context tracking [18].

The case study we report on constitutes the formal, fully machine-checked
verification of a binary-compatible executable model of seL4. Binary compatible
meaning that the corresponding Haskell program, together with a hardware
simulator, can execute normal, compiled user-level ARM11 binaries that would
run unchanged on bare hardware. This includes low-level hardware feedback:
cache flushes, TLB loads, etc. To our knowledge, this is the first such verification
of an OS microkernel of this size and complexity.

Although the verification reported on here reaches a level of detail far greater
than that usually present when a software system is claimed to be verified, we
refrain from calling seL4 itself “fully formally verified” yet. Our goal is to take
the verification from the executable model down to the level of C code, compiled
and running on hardware.

Acknowledgements We thank the other current and former members of the
L4.verified and seL4 teams: Michael Norrish, Jia Meng, Catherine Menon, Jeremy
Dawson, Simon Winwood, Harvey Tuch, Rafal Kolanski, David Tsai, Andrew Boy-
ton, Kai Engelhardt, Kevin Elphinstone, Philip Derrin and Dhammika Elkaduwe
for their help and support.

References

1. W. R. Bevier. Kit: A study in operating system verification. IEEE Transactions
on Software Engineering, 15(11):1382–1396, 1989.

2. W.-P. de Roever and K. Engelhardt. Data Refinement: Model-Oriented Proof
Methods and their Comparison. Number 47 in Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 1998.

3. P. Derrin, K. Elphinstone, G. Klein, D. Cock, and M. M. T. Chakravarty. Running
the manual: An approach to high-assurance microkernel development. In Proc.
ACM SIGPLAN Haskell Workshop, Portland, OR, USA, Sept. 2006.

4. E. W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of
programs. Commun. ACM, 18(8):453–457, 1975.

5. D. Elkaduwe, P. Derrin, and K. Elphinstone. A memory allocation model for an
embedded microkernel. In Proc. 1st MIKES, pages 28–34, Sydney, Australia, 2007.

6. K. Elphinstone, G. Klein, P. Derrin, T. Roscoe, and G. Heiser. Towards a practical,
verified kernel. In Proc. 11th Workshop on Hot Topics in Operating Systems, San
Diego, CA, USA, May 2007.

7. R. J. Feiertag and P. G. Neumann. The foundations of a provably secure operating
system (PSOS). In AFIPS Conf. Proc., 1979National Comp. Conf., pages 329–334,
New York, NY, USA, June 1979.

8. G. Fu. Design and implementation of an operating system in Standard ML. Master’s
thesis, Dept. of Information and Computer Sciences, Univ. Hawaii at Manoa, 1999.

9. M. Gargano, M. Hillebrand, D. Leinenbach, and W. Paul. On the correctness of
operating system kernels. In J. Hurd and T. F. Melham, editors, Proc. TPHOls’05,
volume 3603 of LNCS, pages 1–16, Oxford, UK, 2005. Springer.

10. T. Hallgren, J. Hook, M. P. Jones, and R. B. Kieburtz. An overview of the
Programatica Tool Set. High Confidence Software and Systems Conference, 2004.

11. T. Hallgren, M. P. Jones, R. Leslie, and A. Tolmach. A principled approach to
operating system construction in Haskell. In Proc. ICFP ’05, pages 116–128, New
York, NY, USA, 2005. ACM Press.

12. W. L. Harrison and R. B. Kieburtz. The logic of demand in Haskell. Journal of
Functional Programming, 15(6):837–891, 2005.

13. M. Hohmuth and H. Tews. The VFiasco approach for a verified operating system.
In Proc. 2nd ECOOP-PLOS Workshop, Glasgow, UK, Oct. 2005.

14. B. Huffman, J. Matthews, and P. White. Axiomatic constructor classes in Is-
abelle/HOLCF. In J. Hurd and T. F. Melham, editors, Proc. TPHOls’05, volume
3603 of LNCS, pages 147–162. Springer, 2005.

15. J. Liedtke. On µ-kernel construction. In 15th ACM Symposium on Operating
System Principles (SOSP), December 1995.

16. T. Mossakowski, L. Schröder, and S. Goncharov. A generic complete dynamic logic
for reasoning about purity and effects. In J. Fiadeiro and P. Inverardi, editors,
Proc. FASE 2008, volume 4961 of LNCS, pages 199–214. Springer, 2008.

17. J. Shapiro. Coyotos. http://www.coyotos.org, 2006.
18. M. Staples. A Mechanised Theory of Refinement. PhD thesis, University of

Cambridge, 1999.
19. H. Tuch, G. Klein, and M. Norrish. Types, bytes, and separation logic. In M. Hof-

mann and M. Felleisen, editors, Proc. 34th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 97–108, Nice, France, 2007. ACM.

20. B. Walker, R. Kemmerer, and G. Popek. Specification and verification of the UCLA
Unix security kernel. Commun. ACM, 23(2):118–131, 1980.

http://www.coyotos.org

